Серия 5575BB радиационно-стойких микросхем гальванической развязки, разработанных в рамках ОКР «Интерфейс-ИЗ-Т»

Назначение

Серия радиационно-стойких микросхем гальванической развязки предназначена для передачи информационных сигналов между двумя независимыми электрическими цепями.

Основные характеристики:

- напряжение питания 2,7 ÷ 3,63 В;
- ток потребления не более 15 мА на канал (при U_{CC}=3,3 В и частоте 10 МГц);
- скорость передачи до 150 Мбит/сек;
- температурный диапазон от минус 60°C до 85°C;
- тип входных сигналов КМОП/TTL, LVDS/LVDM;
- тип выходных сигналов КМОП, LVDS/LVDM;
- холодный резерв по всем входам и выходам LVDS/LVDM интерфейсов;
- повышенная радиационная стойкость к факторам космического пространства;
- микросхемы изготовлены по радиационно-стойкой КМОП-технологии на структурах «кремний на изоляторе» с топологическими нормами 0.25мкм;
- напряжение изоляции не менее 2000 В;
- задержка распространения сигнала не более 5нс.

Краткое описание

Серия микросхем гальванической развязки 5575 включает в свой состав пять типов микросхем (таблица 1). Микросхемы обеспечивают передачу информации по двум или четырем независимым каналам. Структурные схемы микросхем 5575ВВ014 - 5575ВВ054 представлены на рисунке 1. В каждом канале передатчик и приемник изолированы друг от друга с помощью трансформатора. Чертежи корпусов представлены на рисунке 2.

В приемнике имеется возможность выбора работы с одним из двух типов входных информационных сигналов: в соответствии с LVDS интерфейсом или КМОП/ТТL (таблица 2). В режиме LVDS/LVDM интерфейса входные сигналы подаются на выводы IDPi и IDNi. В режиме КМОП/ТТL сигнала - на вывод IDi. Выбор типа входного сигнала осуществляется управляющим сигналом MXIi. При низком уровне на MXIi осуществляется прием сигнала на входе IDi, при этом LVDS приемник отключатся, а входы IDPi и IDNi доопределяются до низкого уровня. При высоком уровне на MXIi осуществляется прием сигналов на IDPi и IDNi LVDS приемника, а вход IDi доопределяется до низкого уровня.

В приемнике имеется схема обновления уровня сигнала обеспечивающая прием информации о состоянии уровня входного сигнала не реже, чем раз в n мкс, тогда как схема контроля сигнала в передатчике устанавливает низкий уровень на выходах ODi и ODPi и ODNi если информация о состоянии сигнала не обновлялась в течении 4*n мкс. Схема обновления уровня сигнала функционирует от внутренних тактовых генераторов и не отключаются при блокировании передатчика или приемника.

Выходной сигнал передатчика подается одновременно на LVDS/LVDM интерфейс - выходы ODPi и ODNi и КМОП цифровой выход ODi. При низком уровне на входе XOj устанавливается максимальный выходной ток на ODi не более 4 мA и LVDS интерфейс на ODPi и ODNi. При высоком уровне на входе XOj устанавливается максимальный выходной ток на ODi не более 12 мA и LVDM интерфейс на ODPi и ODNi (таблица 3).

В 5575ВВ014, 5575ВВ034 - 5575ВВ054 имеется функция мультиплексирования выходных данных между каналами при помощи управляющего входа МХО*i*. При низком уровне на МХО*i*

осуществляется прямая передача информации между каналами, при высоком уровне на MXO*i* происходит переключение на соседний канал (таблица 4).

Перевод приемника в состояние «Выключено» осуществляется низким уровнем на управляющем входе EIi, при этом LVDS приемник отключается, входы IDPi, IDNi и IDi доопределяются до низкого уровня.

Перевод передатчика в состояние «Выключено» осуществляется низким уровнем на управляющем входе EOi, при этом LVDS/LVDM выходы переводятся в высокоимпедансное состояние, $KMO\Pi$ – в низкий уровень.

На рисунке2 представлены рекомендуемые схемы включения 5575BB014 - 5575BB054 в режиме LVDS.

Таблица 1 Состав серии.

Тип	Количество каналов, шт.	Направление передачи	Количество выводов
5575BB014	2	2 в прямом	24
5575BB024	2	1 в прямом, 1 в обратном	24
5575BB034	4	4 в прямом	48
5575BB044	4	2 в прямом, 2 в обратном	48
5575BB054	4	3 в прямом, 1 в обратном	48

Таблица 2 Режимы работы приемника.

EIj	MXIj	IDPj/IDNj	IDj
		Включен резистор доопределения	Включен резистор доопределения
0	0 или 1	255 кОм до низкого уровня	100 кОм до низкого уровня
		(LVDS приемник в режиме пониженного	(приемник отключен)
1	0	энергопотребления)	Прием сигнала КМОП/ТТЛ уровня
1	1	Прием сигнала по LVDS интерфейсу	Включен резистор доопределения 100 кОм до низкого уровня

Таблица 3 Управление мощностью выходных сигналов.

XO12	ODPi/ODNi	$\mathrm{OD}i$
0	LVDS (I _{OLH} =3,5mA)	KMOП (I_{OLH} =4 MA)
1	LVDM (I _{OLH} =7,0mA)	КМОП (I _{OLH} =12мА)

Таблица 4 Управление направлением передачи.

Управляющие входы		ие входы	Выходы	
EO1	EO2	MXO12	ODP1/ODN1, OD1	ODP2/ODN2, OD2
1		0	Передача данных из приемника 1	Передача данных из приемника 2
	1	1	Передача данных из приемника 2	Передача данных из приемника 1
0	1	0	Отключен*	Передача данных из приемника 2
		1	Передача данных из приемника 2	Отключен*
1	0	0	Передача данных из приемника 1	Отключен*
		1	Отключен*	Передача данных из приемника 1
0	0	0,1	Отключен*	Отключен*

^{*-} при этом LVDS/LVDM выходы переводятся в высокоимпедансное состояние, КМОП выходы в низкий уровень.

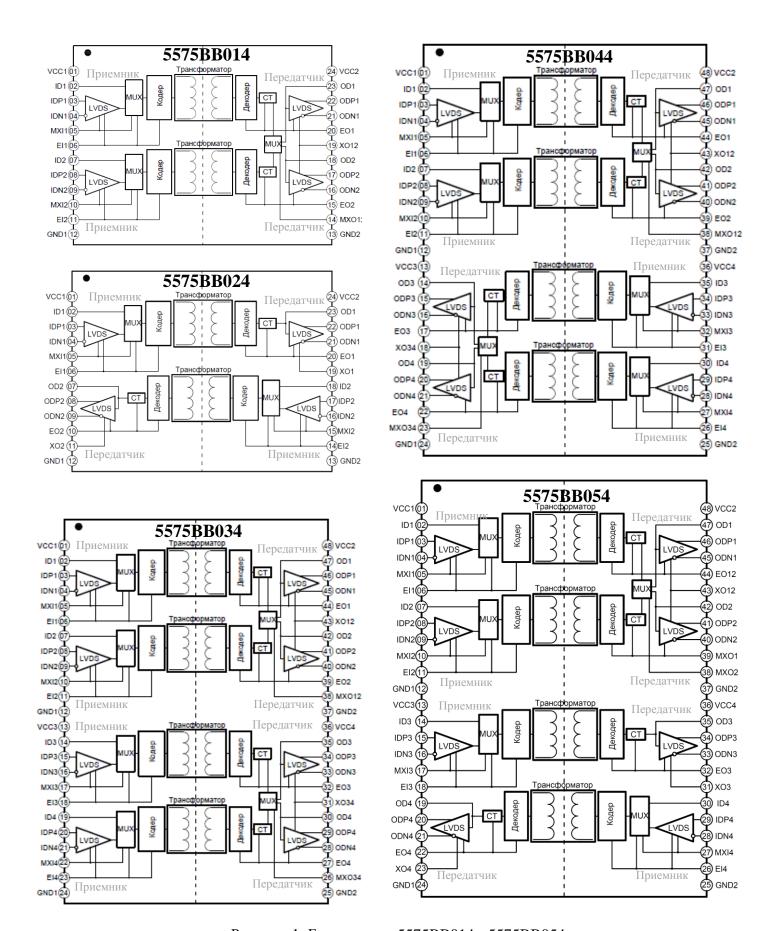
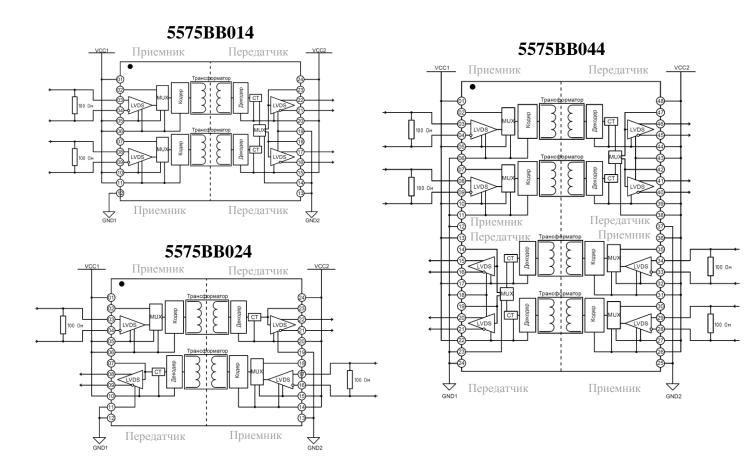



Рисунок 1. Блок- схемы 5575ВВ014 - 5575ВВ054

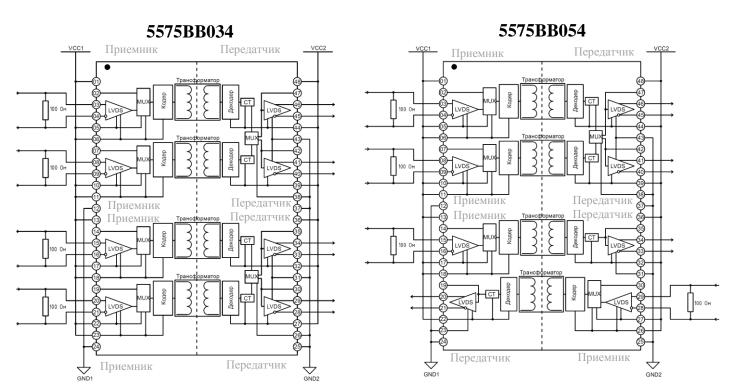


Рисунок 2. Рекомендуемые схемы включения 5575BB014 - 5575BB054 в режиме LVDS

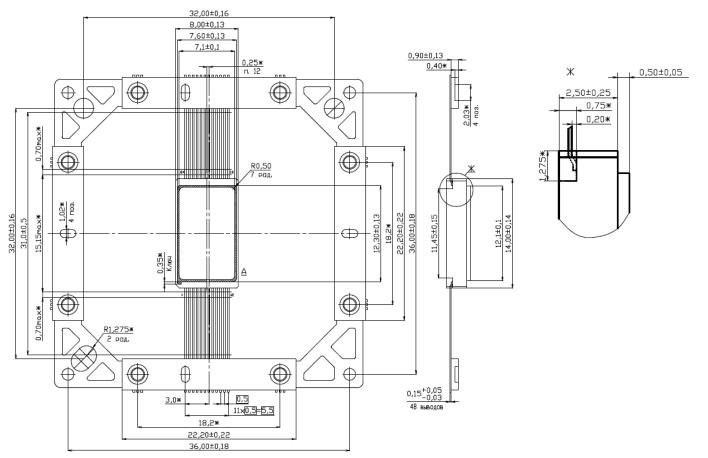


Рисунок 2. Чертеж корпуса микросхем 5575ВВ014 и 5575ВВ024

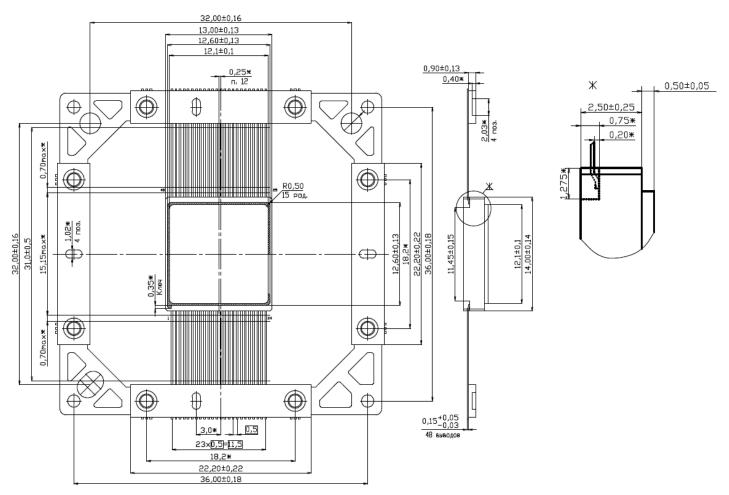


Рисунок 3. Чертеж корпуса микросхем 5575ВВ034 - 5575ВВ054